

Manual dos Transmissores de Temperatura em Cabeçote **MST325 e MST110**

IMPORTANTE

- Leia cuidadosamente este manual de instruções e operação antes de instalar e iniciar a medição de temperatura com este equipamento.
- Mantenha este manual em local acessível para uso posterior.
- O equipamento só pode ser instalado e utilizado por pessoas familiarizadas com este manual de instruções e operação, bem como com as normas aplicáveis em matéria de segurança no trabalho e prevenção de acidentes. Por favor, certifique-se de que apenas pessoal qualificado realiza sua instalação.

Avenida do Estado, 4567 - Mooca - São Paulo - SP - CEP 03105-000

Fone: +55 11 3275-0094 e-mail: vendas@sensycal.com.br

ÍNDICE

DESCRIÇÃO	4
PRINCIPAIS CARACTERÍSTICAS	4
INSTALAÇÃO	5
CONDIÇÕES PARA INSTALAÇÃO	5
MONTAGEM MST325	5
MONTAGEM MST110	6
LIGAÇÃO ELÉTRICA MST325	6
LIGAÇÃO ELÉTRICA MST110	7
CONFIGURAÇÃO	7
INSTALAÇÃO DO DRIVER DO MODEM	7
CONFIGURANDO AS PORTAS COM NO PC PARA MODEM HART	8
INSTALAÇÃO DO SOFTWARE SHARP S10	8
CONTROLE DE CONEXÃO	11
CONFIGURANDO O SENSOR DE TEMPERATURA	12
CONFIGURAÇÃO DOS PARÂMETROS DO TRANSMISSOR	12
CONFIGURANDO A SAÍDA ANALÓGICA	13
INFORMAÇÕES	14
OPÇÕES GERAIS	15
MONITORAÇÃO	
OPERAÇÃO	16
COMUNICAÇÃO	
ESPECIFICAÇÕES TÉCNICAS	17
DESENHOS DIMENSIONAIS	19

MST325/MST110 - TRANSMISSORES DE TEMPERATURA EM CABEÇOTE

Descrição

Os transmissores de temperatura MST325 e MST110 com montagem em cabeçote são excelente opção para medição de temperatura com alta precisão e baixo custo. Veja algumas de suas aplicações:

MST325

- Medição de temperatura linearizada com Pt100...Pt1000, Cu50...100
 UM, Ni100...Ni1000 ou sensor de TC (Tipo B, E, J, K, N, R, S, T);
- Conversão da variação de resistência linear para um sinal de corrente analógico padrão;
- Amplificação de um sinal em mV bipolar para um sinal de corrente padrão de 4 a 20 mA.

MST110

 Conversão do sinal de entrada (Pt100 3 fios) para um sinal de saída analógico, escalável 0 a 20 mA ou 0 a 10V instalado em terminal em cabeçote Form B.

Principais características

- Configuração universal via protocolo HART;
- Operação, visualização e manutenção via PC, por exemplo, com o software de configuração Sharp S10;
- Tecnologia 2-fios e saída analógica 4 a 20 mA;
- Sinal de falha para sensor aberto ou curto-circuito, pré-configurada para NAMUR NE 43;

Diferenciais MST110

- Entrada PT100 3 fios;
- Exatidão de 0,1% do span;

Diferenciais MST325

- Entrada universal (RTD/TC/mV/Ω);
- Isolação galvânica (2000 Vac);
- Alta precisão em toda a faixa de temperatura ambiente (0,02% span para sensor PT100 e 0,1% span para sensor TC);
- Sensor de temperatura interna para a compensação de temperatura ativa (para sensor TC).
- Possui DTM FDT 2.

Figura 1 – Transmissores de temperatura MST110 e MST325

O transmissor é fornecido juntamente com o manual do usuário e software de configuração **Sharp S10**.

Instalação

ATENÇÃO

Apenas pessoal qualificado deve instalar os transmissores de temperatura.

Condições para instalação

- Temperatura ambiente: 40 a 85°C;
- Local de instalação: Invólucro TAF10, conexão em cabeçote Form B;
- Ângulo de instalação: Sem limite;
- A instalação do transmissor em um cabeçote padrão Form B.

Montagem MST325

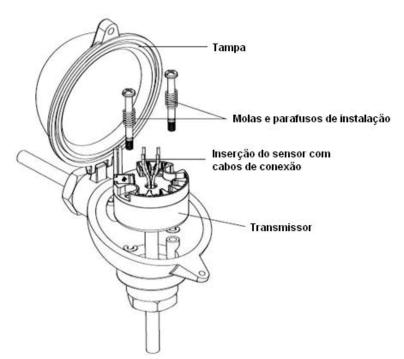


Figura 2 – Instalação do transmissor MST325 num cabeçote Form B

Montagem MST110

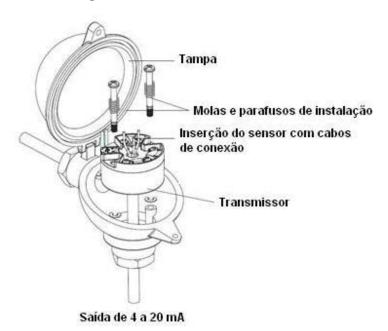


Figura 3 – Instalação do transmissor MST110 num cabeçote Form B

NOTAS

- Faça a montagem com o equipamento desligado.
- Certifique-se de que todas as conexões estão bem apertadas.
- A fim de garantir uma operação sem falhas, os parafusos da borneira devem ser aparafusados firmemente nos cabos de ligação.

Ligação Elétrica MST325

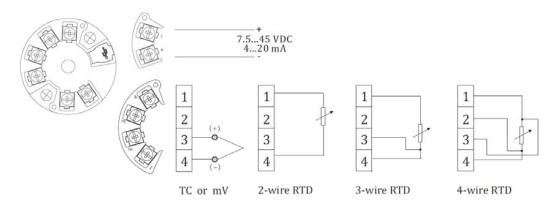


Figura 4 – Ligação elétrica MST325

Ligação Elétrica MST110

Saída 4 a 20 mA

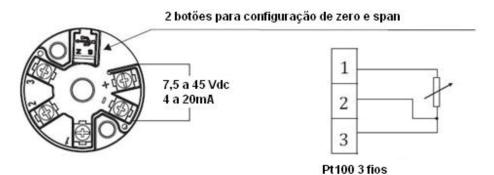


Figura 5 – Ligação elétrica MST110

Configuração

Instalação do driver do modem

Normalmente, a unidade USB é instalada automaticamente no Windows 7 e Windows XP. Se a instalação automática não for executada, siga estes passos para instalar a unidade no seu computador:

- 1. Conecte a interface numa porta USB disponível;
- Uma janela informando que novo hardware foi encontrado abrirá. Clique Next para continuar;
- Selecione Install from a list or specific location (Advanced) e clique Next;
- 4. Selecione Include this location in the search;
- Verifique se o diretório e o nome do arquivo estão corretos e clique Next;
- 6. Clique Finish;
- Uma nova janela informando que novo hardware foi encontrado abrirá;
- 8. Repita os passos de 4 a 8 e a instalação do comunicador USB finalizará.

Figura 6 – Modem HART

Configurando as portas COM no PC para Modem HART

Vá ao menu Iniciar, depois em Painel de controle > Sistema. Uma janela abrirá. Na aba Hardware, clique em Gerenciador de Dispositivos. Localize Portas COM&LPT. Selecione Porta de Comunicação (COM) e dê duplo clique. Na aba Configurações de porta, clique em Avançado. A seguinte janela abrirá:

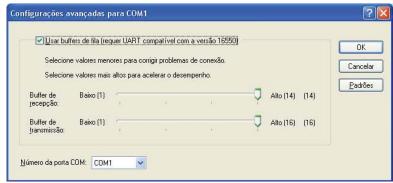


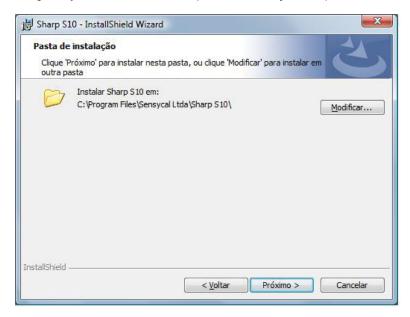
Figura 7 – Configurando as portas de comunicação

Desmarque a opção Usar buffers de fila e clique Ok.

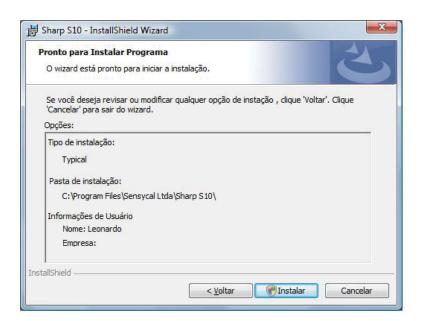
Reinicie o computador.


Instalação do software Sharp S10

Para instalar o software de configuração **Sharp S10**, execute o arquivo **Instalar Sharp S10.exe**.


NOTA

Os parâmetros dos transmissores MST325 só podem ser configurados via software. Para isso são necessários um modem HART e um software de configuração, que pode estar em um PC ou handheld (portátil). No PC é necessário ter uma porta serial disponível. Ao conectar o modem SHI-100 da Sensycal a instalação será automática e o próprio sistema operacional irá criar uma porta COM virtual para a comunicação serial.


A seguinte janela abrirá. Clique em Próximo.

A seguinte janela abrirá. Escolha a pasta de instalação e clique em **Próximo.**


A próxima janela abrirá, mostrando as informações da instalação. Caso queira modificá-los clique em **Voltar** ou clique em **Instalar** para dar sequência no processo.

A instalação começará. Uma janela com o seu status será mostrada.

Clique **Concluir** para finalizar o processo de instalação. Um ícone será criado na área de trabalho. O software **Sharp S10** está pronto para ser usado.

Controle de conexão

Antes de calibrar o transmissor, selecione a porta de comunicação correta. Conecte o modem USB ou o modem HART no computador e então selecione a porta serial. Veja figura seguinte:

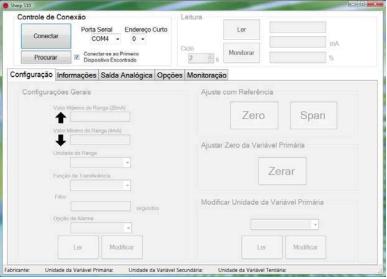


Figura 8 – Configurando a porta de comunicação

Clique em **Conectar** para colocar o transmissor em modo online iniciando assim a comunicação. Para pará-la basta escolher a opção **Desconectar**. Após conectado, a aba **Sensor** será habilitada.

A opção **Procurar** faz uma varredura para encontrar o transmissor na rede. Existe uma opção para que **Sharp S10** se conecte ao primeiro dispositivo encontrado, selecione-a ou não.

Configurando o sensor de temperatura

Clique na aba **Sensor** e a seguinte janela abrirá:

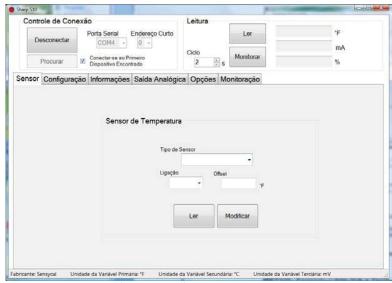


Figura 9 – Configuração do sensor de temperatura

Selecione o tipo do sensor, o tipo de ligação (2, 3 ou 4 fios) e o offset. Clique em **Modificar.** Para ler as informações previamente cadastradas, clique em **Ler**.

NOTA

Certifique-se que as opções selecionadas no **Sharp S10** correspondem ao sensor que está ligado ao transmissor. Caso contrário, as leituras serão erradas. O software não faz essa checagem.

Configuração dos parâmetros do transmissor

Na aba Configuração os parâmetros do transmissor serão ajustados. Em **Configurações Gerais** podem ser configurados os valores máximo (20 mA) e mínimo (4 mA) da temperatura e a sua unidade (°C, °F ou K).

Também podem ser configurados a função de transferência do sensor e o filtro de *damping* (de 0 a 2 segundos).

Em caso de falha do transmissor o autodiagnóstico leva a corrente de saída para 3,7 mA ou para 21 mA de acordo com o configurado pelo usuário. O modo de alarme de corrente pode ser definido no **Sharp S10**, em **Opções de Alarme**. São três opções: **Baixo** (mínimo) para 3,7 mA, **Alto** (máximo) 21 mA e **Último valor selecionado**. A opção padrão é **Baixo**. Quando o supervisório lê este valor, entende que o transmissor tem uma falha. A opção **Último valor selecionado** não reportará as falhas ao supervisório.

Clique Ler para obter as informações já cadastradas.

Depois de ajustar os parâmetros clique em Modificar. Veja figura seguinte.

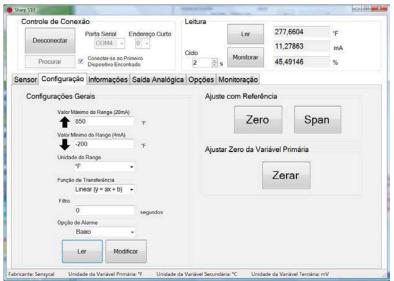


Figura 10 - Configurando os parâmetros do transmissor

Ajuste com Referência

Esse ajuste é feito em campo com o produto já conectado ao processo. Tratase de um ajuste de zero/span com referência externa.

Zero - É usado para ajustar o zero baseado no valor de temperatura atual. Basta clicar em **Zero** e o valor de temperatura lido pelo transmissor será adotado como zero (4 mA) e aparecerá no campo **Valor Mínimo do Range (4 mA)**.

Span - É usado para configuração do span baseado no valor de temperatura atual. Basta clicar em **Span** e o valor de temperatura lido pelo transmissor será adotado como span (20 mA) e aparecerá no campo **Valor Máximo do Range (20 mA)**.

Ajustar Zero da Variável Primária

Clique em **Zerar** para definir o valor ajustado no padrão externo como sendo o zero da variável primária. Esse ajuste não afeta o valor da corrente de saída.

Configurando a saída analógica

O propósito da configuração da saída analógica é fazer o valor de saída do transmissor MST325 ser o mesmo que o de um amperímetro padrão. Para tal siga os seguintes passos:

- Conecte amperímetro padrão na malha de corrente do equipamento. Em seguida, ligue o transmissor.
- Force o equipamento a gerar 4 mA, selecionando este valor na interface do Sharp S10, independente do que está sendo medido (modo Corrente Fixa). Clique em Fixar. Leia o amperímetro e escreva o valor de corrente medido na caixa de texto Valor Mínimo Medido. Clique em Calibrar.
- Proceda da mesma forma para o valor máximo. Force o equipamento a gerar 20 mA, selecionando este valor na interface do Sharp S10. Clique em Fixar. Leia o amperímetro e escreva o valor de corrente medido na caixa de texto Valor Máximo Medido. Clique em Calibrar.

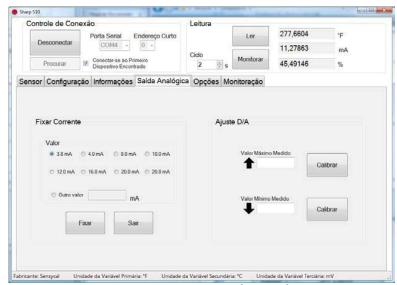


Figura 11 – Ajustando a saída analógica

Para sair do modo de corrente fixa, clique em Sair.

Informações

Na aba **Informações** o usuário pode inserir informações importantes do transmissor. Clique **Ler** para obter as informações já cadastradas.

Figura 12 – Informações do transmissor

As informações que podem ser cadastradas ou obtidas nesta aba são as seguintes:

Informações gerais

Data: Data da configuração;

Mensagem: Informação com até 32 caracteres; Descrição: Informação com até 16 caracteres;

Tag: Até 8 caracteres.

Endereço curto (Polling Address)

Define o endereço HART do equipamento de 0 a 15.

NOTA Em modo multidrop todos os transmissores da malha têm o mesmo endereço.

Informações do sensor

São informações do sensor de temperatura (limites superior e inferior, span mínimo e número de série) e não podem ser modificadas. Clique **Ler** para obtê-las.

Número de identificação

É o Device ID. Essa informação sai de fábrica como sendo o número de série. Pode ser alterado pelo usuário.

Depois de ajustar os parâmetros clique em Modificar.

Opções gerais

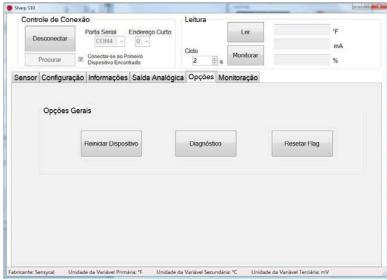


Figura 13 – Opções gerais

Clique **Reiniciar Dispositivo** para reiniciar o transmissor de temperatura.

Ao clicar em **Diagnóstico** é enviado ao transmissor o comando 48, que lê informações de comunicação e do equipamento. Caso haja algum problema, aparecerá uma mensagem em baixo da tela. O usuário será informado do problema.

A opção Resetar flag zera os diagnósticos.

Monitoração

Os dados reais medidos podem ser visualizados em tempo real. Podem ser monotiradas a variável primária e corrente. Determine o ciclo (taxa de atualização) e clique em **Monitorar.** Os gráficos começarão a ser traçados. Clique em **Parar** para cessar a monitoração e em **Limpar** para apagar os dados do gráfico. Veja um exemplo na figura seguinte.

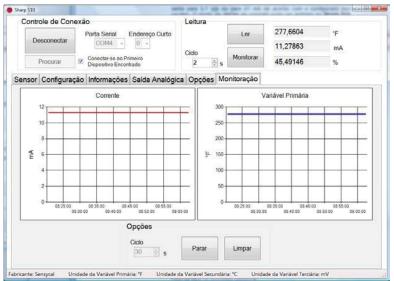


Figura 14 - Monitoração

NOTA

A taxa de atualização para monitoração (ciclo) pode ser selecionada de 2s a 30 minutos.

Operação

Comunicação

Os transmissores de temperatura com montagem em cabeçote MST325 são configurados usando o protocolo HART. Os valores medidos também podem ser lidos usando o protocolo HART. Para fazer isso, o usuário tem duas opções:

- Operação com o comunicador HART;
- Operação usando um PC e software, bem como modem HART.

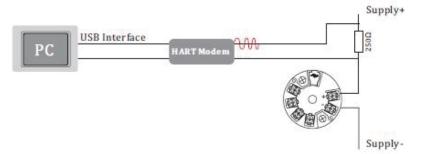


Figura 15 – Operação com modem HART

Especificações Técnicas

	Entrada (MST325)			
Entrada	Tipo	Faixa de medição	Span mínimo	
	Pt100	-200 a 850 °C (-328 a 1562 °F)	10 °C	
	Pt500	-200 a 250 °C (-328 a 482 °F)	10 °C	
	Pt1000	-200 a 250 °C (-328 a 482 °F)	10 °C	
	De acordo com IEC 6075			
Termorresistência	Cu50	-50 a 150 °C (-58 a 302 °F)	10 °C	
(RTD)	Cu100	-50 a 150 °C (-58 a 302 °F)	10 °C	
	Ni100	-60 a 180 °C (-76 a 356°F)	10 °C	
	Ni500	-60 a 180 °C (-76 a 356°F)	10 °C	
	Ni1000	-60 a 150 °C (-76 a 302 °F)	10 °C	
	De acordo com DIN 4376	60 (a = 0.006180)		
Resistências	Resistência em Ω	0 a 400 Ω	10 Ω	
Resistencias	Resistência em Ω	0 a 2000 Ω	10 Ω	
Tipo de conexão: c	onexão 2, 3 ou 4 fios, sens			
	B (PtRh30-PtRh6)	0 a 1820 °C (32 a 3308 °F)	500 °C	
	E (NiCr-CuNi)	-270 a 1000 °C (-454 a 1832	50 °C	
		°F)		
	J (Fe-CuNi)	-210 a 1200 °C (-346 a 2192	50 °C	
		°F)		
Termopares	K (NiCr-Ni)	-270 a 1372 °C (-454 a 2501	50 °C	
Termopares		°F)		
	N (NiCrSi-NiSi)	-270 a 1300 °C (-454 a 2372	50 °C	
	D (D)D1 40 D0	°F)	500.00	
	R (PtRh13-Pt)	-50 a 1768 °C (-58 a 3214 °F)	500 °C	
	S (PtRh10-Pt)	-50 a 1768 °C (-58 a 3214 °F)	500 °C	
	T (Cu-CuNi)	-270 a 400 °C (-454 a 752 °F)	50 °C	
		-10 a 75 mV	5 mV	
mV	(mV)	-100 a 100 mV	5 mV	
		-500 a 500 mV	10 mV	
		-1000 a 1000 mV	20 mV	
Tipo de conexão: 2 fios, sensor de corrente: < 0,5 mA				
Entrada		a (MST110)	Cuan minima	
	Tipo	Faixa de medição	Span mínimo	
Termorresistência	Pt100	-200 a 850 °C (-328 a 1562 °F) 10 °C		
(RTD) De acordo com IEC 60751 (a = 0.00385)				
Tipo de conexão: 3 fios, sensor de corrente: < 0,5 mA				

Alimentação	
Tensão de alimentação	7,5 a 45 Vdc

	Saída
Sinal de saída	4 a 20 mA
Carga	$R_{\text{max}} = [(U_{\text{fonte}} - 7.5) / 0.022] \Omega$
	Abaixo da faixa: queda linear para 3,8 mA
Sinal de alarme	Acima da faixa: aumento linear para 20,5 mA
	Parada do sensor; sensor em circuito aberto: 3,6 mA ou 22,0 mA
Comportamento da	Temperatura, resistência e tensão
transmissão	lineares
Isolação galvânica	MST325 - 2000 Vac (entrada/saída) MST110 – Sem

Performance			
Tamana da manasta	MST325 - 0.25 e		
Tempo de resposta	MST110 – 1 s		
Condições de referência	Temperatura d	le calibração: +23 °C	
-	Entrada	Tipo	Precisão
		Pt100. Ni100	0,02%
		Pt500. Ni500	0,05%
	RTD	Pt1000. Ni1000	0,3%
		Cu50	0,2%
		Cu100	0,3%
		K, J, T, E	típ. 0,1%
Precisão (MST325)	TC	N	típ. 0,1%
		S, B, R	típ. 0,1%
	Ω	10 a 400 Ω	± 0,1 Ω ou 0,02%
	22	10 a 2000 Ω	± 1,5 Ω ou 0,03%
		-10 a 75mV	± 4 μV ou 0,02%
	mV	-100 a 100mV	± 4 μV ou 0,02%
	mv	-100 a 500mV	± 7,5 μV ou 0,02%
		-100 a 2000mV	± 7,5 μV ou 0,02%
Precisão (MST110)	Entrada	Tipo	Precisão
` '	RTD	Pt100	0,2K ou 0,1% do span
Atraso de chaveamento	≤ 2s	≤ 2s	
Influência da tensão de alimentação	< ± 0.01%/V de desvio de 24V		
Influência da temperatura	Desvio de entrada + desvio de saída		
ambiente (desvio total de		000 Ω, típ. 0,0015% d	
temperatura)	Saída 4 a 20 mA, típ. 0,005% do valor medido		
Influência da carga	\pm 0,02%/100 Ω , os valores referem-se ao valor fundo de escala		
Influência da junção fria (para TC – MST325)	Pt100 DIN IEC 60751 CI. B		
Estabilidade a longo prazo	< 0,1 K/ano ou < 0,05%/ano A % refere-se ao span configurado.		
Configuração de autoestabilidade (MST325)	0 a 2%		
Configuração de filtro (MST325)	0 a 160μA		
Resolução	MST325 - 0,3μ MST110 – 1 μ		

Condições ambientais	
	Ângulo: sem limite
Instalação	Área: Conexão em cabeçote de acordo com
	DIN 43729 Form B; invólucro TAF 10
Temperatura	Ambiente: -40 a 85 °C (-40 a 185 °F)
	Armazenamento: -40 a 100 °C (-40 a 212 °F)
Condensação	Permitida
Grau de proteção	IP00 / IP66 instalado
Resistência a choques	4g/2 a 150 Hz conforme IEC 60068-26
e vibrações	
Compatibilidade	Imunidade a interferências e emissão de
eletromagnética (EMC)	interferências de acordo IEC 61326-1:2006

Características físicas	
Dimensões	MST325 - 44 x 24,0 mm
	MST110 – 44 x 24,2 mm
Peso	MST325 - Aproximadamente 40 g
	MST110 – Aproximadamente 27 g
Material	Invólucro em policarbonato e placa
	eletrônica protegida por resina em silicone

	Contificado o conscissão o	
	Certificado e aprovações	
Marcação CE	O dispositivo atende aos requisitos legais das diretivas CE.	
	IEC 60529: Grau de proteção provido pelo invólucro (Código IP)	
Outros padrões e	IEC 61010: Requisitos de segurança para aparelhos de medição, controle e uso em laboratório.	
guias	IEC 61326: Compatibilidade eletromagnética (Requerimentos EMC)	
	NAMUR: Grupo de trabalho padrão para medição e tecnologia de controle na indústria química.	

Desenhos dimensionais

As dimensões estão em milímetros e entre parênteses em polegada.

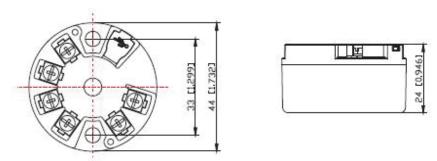


Figura 16 – Desenhos dimensionais MST325

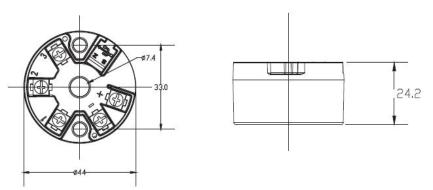


Figura 17 – Desenhos dimensionais MST110