

Temperatura

MST885i Transmissor de Temperatura HART

Manual de Usuário

MAN-DE-0029 PT-BR REV. 05

© Sensycal Instrumentos e Sistemas Ltda.

- PÁGINA EM BRANCO -

Anotações

Sumário

4

14

.....

Introdução	 2
Objetivo	 2
Sobre o MST885i	 2
Convenções tipográficas	 2
Símbolos	 3
Documentos relacionados	 3
Contato	 3

Segurança

Instalação	 5
Verificação	 5
Fatores de ambiente	 5
Montagem	 6
Ligação elétrica	 7
Bloco de ligação	 7
Ligação do sensor	 7
Ligação HART	 8

Operação	 9
Tela e Botões	 9
Tela LCD	 10
Botões de operação	 10
Ajuste Local	 11
Modificar variável indicada	 11
Menu de configura- ções	 12
DTM (Device Type Manager)	 13

Especificações

Introdução	As informações contidas neste de transmissores de temperatura MS Sensycal [®] . Todos os componente fabricação de nossos produtos sã critérios de qualidade, em confor ISO 9001:2015.	ocumento se aplicam aos 5T885i desenvolvidos pela es e processos envolvidos na ão submetidos a rigorosos rmidade com nossa certificação
Objetivo	O objetivo desse documento é a transmissores de temperatura M acessar e utilizar essas funcionali	presentar as funcionalidades dos ST885i, e também explicar como dades corretamente.
	Qualquer pessoa que deseje utili deve primeiramente ler e entend nesse documento, especialmente (veja a seção "Segurança").	zar um transmissor MST885i er as informações contidas e as informações de segurança
Sobre o MST885i	O transmissor MST885i possui en exatidão, sendo ideal para integr medição de temperatura. Pode t medição de tensões de corrente	trada universal com ótima ar processos envolvendo a ambém ser utilizado para contínua e resistências.
	O MST885i indica a leitura de ten LCD com luz de fundo (backlight	nperatura através de uma tela).
	A operação do MST885i pode ser HART. O MST885i possui DTM ver acesso a toda a sua árvore de co aplicativo FDT/DTM, como o PAC botões de ajuste local perto da s configuração sem a necessidade HART.	feita através do protocolo são FDT 2.0, que permite o nfigurações através de um Tware. Possui também dois ua tela LCD, que permitem sua de utilizar-se um configurador
Convenções tipográficas	As seguintes convenções tipográ elaboração deste documento:	ficas foram utilizadas na
	Sequências de menus ou comandos envolvendo a interação sequencial do usuário são representados em negrito, e cada etapa da sequência é separada por uma seta.	Acesse Settings → Battery → Level
	Botões ou símbolos presentes na interface de usuário são representados em negrito com nomes que os identificam entre colchetes.	Pressione [OK] para continuar

Botões físicos são representados por desenhos que se assemelham o formato dos botões ou pelo nome do botão em negrito entre chaves.	Aperte ●z para modificar a configuração Aperte {z} para modificar a configuração
A interação simultânea com dois ou mais botões é representada pelos desenhos que representam seus formatos unidos por sinais de soma. A interação também pode ser representada pelos nomes dos botões em negrito entre chaves, unidos por sinais de soma.	Aperte Z + S por 3 segundos ou mais para acessar o menu de configurações Aperte {Z} + {S} por 3 segundos ou mais para acessar o menu de configurações

Símbolos

Os símbolos abaixo são utilizados ao longo desse documento para contextualizar as informações apresentadas.

DE-0100).

Este símbolo é utilizado para indicar uma situação potencialmente perigosa que, caso não seja evitada, pode resultar em lesões sérias ou morte.

Este símbolo é utilizado para indicar informações úteis, dicas, ou conhecimentos importantes para a instalação e operação do produto.

Documentos relacionados

Especificações Técnicas (datasheet) do MST885i (DAS-

Contato

Para mais informações, entre em contato conosco:

SENSYCAL Instrumentos e Sistemas Avenida do Estado 4567 CEP: 03105-000 - São Paulo - SP Site: www.sensycal.com.br Tel: +55 11 3275 0094 / +55 11 3271 8715 Email:vendas@sensycal.com.br / suporte@sensycal.com.br

Segurança

Antes de instalar e operar o transmissor MST885i, leia e entenda todas as informações relevantes. Isso inclui todos os protocolos de segurança do local de trabalho, normas de segurança gerais, e este documento.

O MST885i deve ser utilizado apenas por profissionais qualificados. O usuário é responsável pelo transporte, armazenamento, instalação, operação e manutenção do transmissor.

Para mais informações sobre os limites de funcionamento do MST885i veja a seção "Especificações".

Para prevenir incêndios, explosões e lesões:

- Utilize o equipamento apenas como especificado nesse documento.
- Antes de instalar o equipamento, verifique se ele atende aos requisitos de classificação relevantes da área.
- Não realize alterações no equipamento fora do escopo definido por esse documento. Isso irá invalidar a garantia do produto e poderá causar danos aos usuários e ao produto.
- A substituição de componentes pode comprometer o funcionamento do equipamento e causar lesões ao usuário.
- Não utilize o equipamento se ele operar de forma incorreta.
- Não utilize o equipamento se ele estiver alterado ou danificado.
- Se o equipamento for colocado em uma situação fora de seus limites de segurança, verifique se houve algum dano ao equipamento. Se necessário, retorne o produto para a Sensycal para análise e reparo.
- Evite qualquer ação que possa gerar uma carga eletrostática. Descargas eletrostáticas podem gerar explosões.

Instalação

Verificação

Esta seção explica como preparar o MST885i para ser utilizado. Para iniciar essa seção, certifique-se de que você já leu e entendeu as informações contidas na seção "Segurança".

Antes de realizar a instalação do MST885i, é necessário verificar a integridade do transmissor. A presença de qualquer uma das condições abaixo é um indício de problemas que podem afetar o funcionamento do MST885i e colocar o usuário em risco:

- Danos (deformações, perfurações e corrosão) no invólucro metálico do transmissor ou na borneira/terminal elétrico.
- Vazamento de líquidos ou fumaça vindo do interior do equipamento.
- Fios saindo de dentro do invólucro do equipamento.

Caso uma ou mais dessas condições seja verificada, entre imediatamente em contato com a Sensycal.

Não utilize o MST885i caso ele apresentar qualquer uma das condições listadas acima.

Fatores de Ambiente

A instalação adequada do transmissor é fundamental para garantir o seu funcionamento correto. Fatores ambientais desfavoráveis podem prejudicar a performance de medição do MST885i ou até mesmo impedir sua operação normal.

Seguem abaixo algumas considerações sobre a forma de instalação para otimizar o funcionamento do transmissor:

1. Para instalações a céu aberto, evitar expor o transmissor ao sol, buscando instalá-lo em um local com sombra. Isso irá melhorar a estabilidade das medições e aumentará o tempo de vida do equipamento.

2. Garanta que o equipamento seja mantido dentro dos limites de umidade especificados (veja a seção "Especificações). Em ambientes com alto índice de umidade, garantir que o invólucro do transmissor seja mantido fechado e vedado o máximo possível.

3. Evitar instalar o equipamento próximo à objetos de alta temperatura. Expor o invólucro e a eletrônica do transmissor constantemente à altas temperaturas irá prejudicar a sua estabilidade e vida útil.

4. Mantenha o transmissor o mais próximo possível do sensor de temperatura, utilizando cabos adequados para o tipo de sensor escolhido. Cabos muito longos ou de baixa qualidade irão comprometer a exatidão das medições do transmissor.

Montagem

O MST885i pode ser montado de dois modos:

Modo 1 - Separado do sensor de temperatura usando um suporte de fixação (braçadeira) opcional.

Modo 2 - Acoplado ao sensor de temperatura

Utilizando o suporte de fixação a montagem pode ser feita em paredes ou tubulações, conforme ilustrado na figura 1.

Para adequar-se à orientação da montagem, a tela do transmissor MST885i pode ser rotacionada em até 357 graus, com uma resolução de rotação de aproximadamente 3 graus.

Para acessar a tela, remova a tampa com visor. É possível que a tampa com visor esteja travada pelo parafuso de trava frontal. Para soltar a tampa, remova o parafuso, cuja localização é mostrada na figura 2.

Figura 2 - Parafuso de trava da tampa com visor

Ligação Elétrica

Bloco de ligação

O transmissor MST885i é alimentado através do seu bloco de ligação ou borneira, localizado sob a tampa traseira do invólucro. O acesso dos cabos ao bloco de ligação é feito pelas suas conexões elétricas, localizadas na lateral do invólucro.

A figura 3 ilustra as conexões elétricas e a localização da tampa traseira do transmissor.

Figura 3 - Dimensões e localização das conexões elétricas e tampa traseira

Após a remoção da tampa traseira, é possível acessar o bloco de ligação elétrica, conforme ilustrado na figura 4.

Figura 4 - Bloco de ligação elétrica

Os terminais marcados como + e - correspondem aos terminais de alimentação positiva e negativa, respectivamente, e devem receber alimentação de 12 ... 32 Vdc.

Acima do bloco de ligação há um terminal terra conforme mostra a figura 4. Por conveniência, existe também um terminal terra na parte externa do transmissor, indicado apropriadamente pelo símbolo de terra elétrico.

Ligação do sensor No bloco de ligação existem quatro outros terminais identificados por números de 1 a 4. Esses terminais são utilizados exclusivamente para conexão de sensores de temperatura ao transmissor, conforme ilustrado na figura 5.

© SENSYCAL ® Instrumentos e Sistemas Ltda.

Figura 5 - Diagramas de ligação elétrica para diferentes sensores

Ligação HARTOs transmissores de temperatura MST885i possuem saída
analógica de corrente 4 ... 20 mA com protocolo HART.
Para realizar a comunicação com o equipamento através do
protocolo HART é necessária uma carga mínima de 250 Ω. A
ligação da fonte e do configurador HART deve ser feita de acordo
com a figura 6.

Figura 6 - Diagramas de ligação do MST885i trabalhando como transmissor HART

 Nunca alimente o equipamento com tensões acima das especificadas. Isso irá danificar o equipamento e em casos extremos poderá causar lesões ao usuário.

Operação

Esta seção explica como realizar a operação do transmissor MST885i. Isso inclui uma descrição sobre a sua tela e botões, instruções sobre como realizar a configuração do equipamento através dos botões de ajuste local, e informações básicas sobre a utilização do DTM do equipamento para configuração através do protocolo HART.

Antes de ler essa seção, certifique-se de que você leu e entendeu a seção "Segurança", e de que os procedimentos contidos na seção "Instalação" foram seguidos corretamente.

Tela e Botões O transmissor MST885i possui uma tela LCD com luz de fundo (backlight), localizada sob a tampa com visor na parte frontal da carcaça do equipamento. Próximo à tela LCD existem 3 botões, chamados de **botões de operação**. Os botões de operação podem ser utilizados para realizar o ajuste local do transmissor. Para acessá-los é necessário remover a tampa com visor.

A figura 7 ilustra a tela LCD e os botões de operação do MST885i.

Tela LCD

O transmissor MST885i possui uma tela LCD com luz de fundo (backlight). A tela é utilizada para mostrar o valor medido pelo transmissor, seja esse valor uma temperatura, um valor de resistência ou um valor de tensão. Além disso, a tela LCD pode indicar o valor da corrente de saída do transmissor e o valor da medição em porcentagem.

A tela possui largura de aproximadamente 35 mm e altura de aproximadamente 23 mm e pode ser dividida em três regiões, conforme ilustra a figura 8.

Figura 8 - Regiões da tela LCD

Na parte superior da tela está localizado um bargraph ou gráfico de barras. A função do gráfico de barras é indicar a porcentagem da medição do transmissor em relação à faixa de medição configurada. O gráfico de barras possui 20 divisões, o que significa que cada barra representa um incremento de 5%.

A parte central da tela é utilizada para indicar valores numéricos de até 5 dígitos, como o valor da medição ou valores de parâmetros do transmissor.

A parte inferior da tela é utilizada para indicar informações adicionais, como unidades ou no caso do menu de configurações, o número do parâmetro do transmissor (para mais informações, veja a seção "Ajuste Local").

Botões de operação Conforme ilustrado na figura 7, o transmissor MST885i possui três botões de operação. Acima da tela LCD está localizado o botão M. De modo geral, esse botão é utilizado no menu de configurações para confirmar mudanças nos parâmetros do transmissor.

No canto inferior esquerdo está localizado o botão **S**. Esse botão pode ser utilizado para modificar a variável mostrada na tela de medição do transmissor, e no menu de configurações esse botão é utilizado para modificar parâmetros do transmissor.

No canto inferior direito está localizado o botão **Z**. Esse botão é utilizado para confirmar modificações através do ajuste local. No caso de parâmetros numéricos, esse botão também possui a função de modificar o dígito do parâmetro numérico a ser modificado.

Mais informações sobre o uso desses botões podem ser encontradas na seção "Ajuste Local".

Ajuste Local

Através da tela e dos botões de operação é possível realizar a o ajuste local do transmissor, sem a necessidade de se utilizar um configurador HART.

O ajuste local possibilita a **modificação da variável indicada** na tela de medição. Além disso, é possível alterar diversos parâmetros do transmissor através do **menu de configurações**. Alguns dos parâmetros que podem ser modificados são a faixa de medição do equipamento, a unidade de medição utilizada e o tipo de sensor.

Modificar variável indicada Quando o transmissor MST885i é ligado, a **tela de medição** é mostrada. Por padrão essa tela é configurada para mostrar o valor medido pelo transmissor (temperatura, resistência ou tensão) através do sensor conectado ao seu bloco de ligação (veja a seção "Bloco de ligação"). No entanto, é possível modificar a variável mostrada na tela de medição através do botão de operação **S**.

> A partir da tela de medição, ao pressionarmos e segurarmos o botão **S**, a tela passa a circular pelas opções de variáveis possíveis para serem indicadas. As opções inclusas são: medição do sensor (com 1 casa depois da vírgula), medição do sensor (com 2 casas depois da vírgula), saída de corrente e medição do sensor em porcentagem. Para selecionar a variável a ser mostrada, basta soltar o botão **S** no momento em que a variável aparece na tela.

A figura 9 ilustra esse processo:

Figura 9 - Árvore de modificação da variável indicada

Menu de configurações

Através dos botões de operação, é possível acessar o menu de configurações do MST885i, no qual é possível visualizar e modificar diversos parâmetros do transmissor.

Para acessarmos o menu de configurações a partir da tela de medição, basta pressionarmos os botões Z e S simultaneamente. O menu de configurações é composto por uma seguência de telas, cada uma correspondendo a um parâmetro ou funcionalidade do transmissor. Cada tela é identificada por um número no canto inferior esquerdo, e conforme navegamos o menu, acessamos parâmetros identificados por números mais altos.

A primeira tela a ser mostrada, identificada pelo número 2, corresponde ao parâmetro da unidade de medição principal do transmissor. Para modificarmos esse parâmetro, pressionamos o botão S. Pressionando o botão S repetidamente, circulamos pelas opções de unidades de medição suportadas pelo transmissor. Para selecionarmos uma unidade, basta pressionarmos o botão Z ou o botão M. Ao selecionarmos uma unidade, a próxima tela do menu é mostrada. Quando chegamos na última tela do menu, ao pressionarmos os botões Z ou M, somos levados de volta para tela de medição.

A figura 10 ilustra toda a árvore de navegação do menu de configurações do MST885i. É importante notar que alguns parâmetros não serão mostrados dependendo do tipo do sensor selecionado.

DTM (Device Type Manager)

Os transmissores MST885i possuem comunicação HART e portanto é possível configurá-los remotamente através de comandos do protocolo HART.

A Sensycal disponibiliza um Device Type Manager (DTM) que permite o acesso a toda a árvore de comandos do MST885i. O DTM pode ser encontrado na página do equipamento no site da Sensycal (**www.sensycal.com.br**). O DTM também pode ser disponibilizado de outras formas de acordo com a necessidade do usuário, entrando em contato pelo email **vendas@sensycal. com.br**.

O DTM disponibilizado foi desenvolvido de acordo com o padrão FDT 2.0, e portanto é compatível com qualquer aplicação (frame application) que suporta essa versão FDT (por exemplo, PACTware versão 5.0 ou superior).

Para realizar a comunicação com o transmissor, é necessário instalar o DTM e uma aplicação FDT compatível em um computador com sistema operacional Windows. Em seguida, é necessário conectar ao computador uma interface HART, que por sua vez deve ser ligada ao transmissor de acordo com a figura 6 na seção "Ligação HART".

Especificações

Sensores/Entradas	5			
Termorresistência (F	RTD) e Resistência	l		
Тіро	Norma	Limites de Faixa	Span Mínimo	Exatidão
Pt50 (α = 0,00385)	IEC 60751	-200 850 °C	10 °C	±0,15 °C
Pt50 (α = 0,003916)	JIS C1604-1987	-200 850 °C	10 °C	±0,15 °C
Pt100 (α = 0,00385)	IEC 60751	-200 850 °C	10 °C	±0,15 °C
Pt100 (α = 0,003916)	JIS C1604-1987	-200 850 °C	10 °C	±0,15 °C
Pt100 (α = 0,00392)	MIL-T-24388	-200 850 °C	10 °C	±0,15 °C
Pt200 (α = 0,00385)	IEC 60751	-200 850 °C	10 °C	±0,15 °C
Pt500 (α = 0,00385)	IEC 60751	-200 850 °C	10 °C	±0,10 °C
Pt1000 (α = 0,00385)	IEC 60751	-200 850 °C	10 °C	±0,10 °C
Ni120 (α = 0,00672)	DIN 43760:1987	-79 260 °C	10 °C	±0,05 °C
Cu10 (α = 0,00428)	GOST 6651-2019	-100 260 °C	5 °C	±0,05 °C
Cu50 (α = 0,00426)	SAMA RC21-4-1966	-100 200 °C	5 °C	±0,05 °C
Cu50 (α = 0,00428)	GOST 6651-2019	-100 200 °C	5 °C	±0,05 °C
Cu100 (α = 0,00426)	SAMA RC21-4-1966	-100 200 °C	5 °C	±0,05 °C
Cu100 (α = 0,00428)	GOST 6651-2019	-100 200 °C	5 °C	±0,05 °C
0600 Ohms	-	0 600 Ohms	50 Ohms	0,02 Ohms
05000 Ohms	-	0 5000 Ohms	100 Ohms	1 Ohms
Termopar (TC) e Mil	ivolts			
Тіро	Norma	Limites de Faixa	Span Mínimo	Exatidão
Termopar Tipo E	IEC 60584	-200 1000 °C	25 °C	±0,4 °C
Termopar Tipo J	IEC 60584	-210 1200 °C	25 °C	±0,4 °C
Termopar Tipo B	IEC 60584	100 1820 °C	100 °C	±1 °C
Termopar Tipo K	IEC 60584	-200 1372 °C	25 °C	±0,4 °C
Termopar Tipo N	IEC 60584	-200 1300 °C	25 °C	±0,4 °C
Termopar Tipo R	IEC 60584	0 1768 °C	100 °C	±0,8 °C
Termopar Tipo S	IEC 60584	0 1768 °C	100 °C	±0,8 °C
Termopar Tipo T	IEC 60584	-200 400 °C	25 °C	±0,4 °C
Termopar Tipo DIN L	DIN 43710:1985-01	-200 900 °C	25 °C	±0,4 °C
Termopar Tipo DIN U	DIN 43710:1985-01	-200 600 °C	25 °C	±0,4 °C
Termopar Tipo C (W5)	SAMA RC21-4-1966	0 2000 °C	25 °C	±1 °C
Termopar Tipo GOST L	GOST R 8.585-2001	-200 800 °C	25 °C	±0,4 °C
-120 120 mV	-	-120 120 mV	12 mV	0,025 mV
-1000 1000 mV	-	-1000 1000 mV	50 mV	0,1 mV

Operação	
Display	
	5 dígitos numéricos
Características	• Gráfico de barras 0 100 % de 20 segmentos
	Luz de fundo automática
Unidades	°C, °F, °R, K, mV, Ω
Alimentação	
Tensão de alimentação	12 32 V dc
Especificações físicas	
Material	
Especificações físicas Material Invólucro metálico	Alumínio, aço inox AISI 316
Especificações físicasMaterialInvólucro metálicoSuporte de fixação	Alumínio, aço inox AISI 316 Aço carbono, aço inox AISI 304, aço inox AISI 316
Especificações físicasMaterialInvólucro metálicoSuporte de fixaçãoPeso	Alumínio, aço inox AISI 316 Aço carbono, aço inox AISI 304, aço inox AISI 316 Aproximadamente 0,85 kg (sem suporte de fixação)
Especificações físicasMaterialInvólucro metálicoSuporte de fixaçãoPesoCondições de ambiente	Alumínio, aço inox AISI 316 Aço carbono, aço inox AISI 304, aço inox AISI 316 Aproximadamente 0,85 kg (sem suporte de fixação)
Especificações físicasMaterialInvólucro metálicoSuporte de fixaçãoPesoCondições de ambienteTemperatura de operação	Alumínio, aço inox AISI 316 Aço carbono, aço inox AISI 304, aço inox AISI 316 Aproximadamente 0,85 kg (sem suporte de fixação) -40 85 °C
Especificações físicasMaterialInvólucro metálicoSuporte de fixaçãoPesoCondições de ambienteTemperatura de operaçãoTemperatura de armazenamento	Alumínio, aço inox AISI 316 Aço carbono, aço inox AISI 304, aço inox AISI 316 Aproximadamente 0,85 kg (sem suporte de fixação) -40 85 °C -40 85 °C

A Sensycal Instrumentos e Sistemas

foi criada com a missão de impulsionar a melhoria de processos industriais através de soluções de ponta em instrumentação, metrologia e automação que garantam segurança, confiabilidade e produtividade.

Valorizamos a opinião de nossos clientes, e trabalhamos sempre para entender suas necessidades e desenvolver produtos de qualidade que atendam às suas expectativas e promovam a melhoria de seus processos.

Oferecemos soluções em metrologia - serviços de calibração, manômetros, bombas pneumáticas e hidráulicas, calibradores, multi-calibradores e controladores de pressão - instrumentação transmissores de pressão, nível e temperatura, fabricação e manutenção de selos, configuradores HART, PROFIBUS PA e FOUNDATION Fieldbus - e automação monitores de válvula, posicionadores e outras soluções de controle industrial.

Possuímos um laboratório acreditado sob a norma ISO/ IEC 17025:2017 pela Coordenação-Geral de Acreditação do Inmetro para realizar calibrações em pressão com incertezas baixíssimas, de acordo com padrões internacionais.

Somos certificados também pela norma ISO/IEC 9001:2015, atestando nosso compromisso com a melhoria contínua e com a criação de soluções de qualidade.

Sensycal Instrumentos e Sistemas Ltda. é uma empresa registrada em Avenida do Estado 4567, Mooca, São Paulo, SP, Brasil, CEP:03105-000.

Todas as especificações estão sujeitas a mudanças sem aviso prévio para fins de melhoria dos produtos.